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Abstract
This paper develops a graphical tool – the uncertainty triangle – that allows for testing
whether choices under uncertainty obey the generalized axiom of revealed preference
(GARP). We find that more than 95% of subjects made choices that can be rational-
ized by the maximization of a well-behaved utility function. The uncertainty triangle
also makes it straightforward to characterize heterogeneity in attitudes towards uncer-
tainty. To accomplish this we propose a one-parameter extension of Expected Utility
in which uncertainty attitude is everywhere constant in the triangle. Experimental
data indicate that about 60% of participants made choices consistent with the model
and, within this group, 48% were uncertainty averse, 22% uncertainty seeking, and
30% uncertainty neutral. The remaining 40% of participants appear to hold variable
uncertainty attitudes. A model that can accommodate this variability is proposed and
calibrated.

Keywords Uncertainty · Risk · Expected utility · Revealed preferences ·
Decision-making

JEL Classifications D81 · C91

1 Introduction

The analysis of decisions under risk involves prospects that have fully known proba-
bilities. Real-world settings, however, rarely involve full knowledge about prospects.
When individuals do not possess full knowledge about prospects they are said to
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make choices in the face of Knightian uncertainty (Knight 1921). While individual
variability in risk attitudes is a well-established finding in that domain, heterogeneity
of uncertainty attitudes is not as widely studied. One reason is that studying uncer-
tainty attitudes poses additional challenges. The goal of this paper is to tackle some
of these challenges and provide a characterization of individual variability in atti-
tudes towards uncertainty. The first step we take is to assume that the objects of
choice are two-outcome lower envelope lotteries.1 Lower envelope lotteries specify
lower bounds on probabilities, {p

h
, p

l
}, for a high and low outcome, zh and zl with

zh > zl , and the amount of unassigned probability mass, y = 1 − (p
h

+ p
l
), an

objective quantity henceforth called uncertainty.2 Formally, we denote a lower enve-

lope lottery as L =
(
p

h
, p

l
, y

)
. Analogous to the probability distributions studied

in risk, the entries in a lower envelope lottery must be non-negative and sum to one.
To parsimoniously model choices in this setting we propose a one parameter exten-

sion of Expected Utility. We call this model Partial Ignorance Expected Utility (PEU)
and it evaluates a lower envelope lottery (L) as3

PEU [L] = EU

[
αL + (1 − α)L

]
, α ∈ [0, 1]. (1)

In terms of notation, L is a transformation of the lower envelope lottery L into a
risky lottery with all of the uncertainty in L added to the minimum probability of

the worst outcome: L =
(
p

h
, p

l
+ y

)
. In contrast, L is a transformation of L into

a risky lottery with all of the uncertainty added to the minimum probability of the

best outcome: L =
(
p

h
+ y, p

l

)
. The parameter α controls a mixture of these two

lotteries and is interpreted as a choosers attitude towards uncertainty. Values of α >

1/2 place more weight on L with, correspondingly, less weight on L. This indicates a
pessimistic attitude towards the uncertainty in L and we label choosers with α > 1/2
as uncertainty averse. Values of α < 1/2 put more weight on L and less weight on L.
This indicates a more optimistic attitude towards uncertainty and we label choosers
with α < 1/2 as uncertainty seeking. Choosers with α = 1/2 weight equally between
L and L and are called uncertainty neutral. Whatever a chooser’s α, the mixture

1The lower envelope nomenclature is borrowed from the literature on imprecise probabilities. See, for
example, Dempster (1967) and Shafer (1976).
2This paper uses the term ‘uncertainty’ as a concept that is related-to but distinct-from ‘ambiguity.’ Here,
uncertainty is an objective quantity corresponding to the amount of unassigned probability mass in a
lower envelope lottery. Ambiguity, in contrast, is “a quality depending on the amount, type, reliability, and
‘unanimity’ of information” (Ellsberg 1961, pg. 657). Thus, ambiguity is a more general concept that can
include subjective components. The distinction between uncertainty and ambiguity is important because
our approach permits an examination of uncertainty attitudes in the context of lower envelope lotteries. Our
approach does not, however, permit an examination of ambiguity, or ambiguity attitudes, in the manner of
Ghirardato et al. (2004).
3The name ‘Partial Ignorance Expected Utility’ was inspired by Chapter 13.5 in Luce and Raiffa (1958).
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αL+(1−α)L is assumed to be evaluated with a von Neumann-Morgenstern Expected
Utility, EU [·].4

To help illustrate how α captures uncertainty attitude consider Fig. 1a. We call this
the uncertainty triangle and it is a graphical depiction of all two outcome lower enve-
lope lotteries.5 The vertices of the uncertainty triangle represent three special cases:
(i) certainty of receiving the good outcome (p

h
= 1), (ii) certainty of receiving the

bad outcome (p
l
= 1), and (iii) a situation in which nothing is known about the prob-

ability distribution over the two outcomes (y = 1). Lower envelope lotteries on the
hypotenuse of the triangle are analogous to fully specified lotteries because they have
no uncertainty (y = 0). Horizontal movements in the triangle result in a one-to-one
tradeoff between uncertainty (y) and the minimum probability for the bad outcome
(p

l
) while holding the minimum probability for the good outcome (p

h
) constant.

Vertical movements trade off y and p
h
holding p

l
constant while movements parallel

to the hypotenuse hold y fixed while trading off p
h
and p

l
.

The Partial Ignorance Expected Utility model can be written as:

PEU
(
p

h
, p

l
, y

)
= α

[
p

h
uh +

(
p

l
+ y

)
ul

]
+ (1 − α)

[
(p

h
+ y)uh + p

l
ul

]
. (2)

Normalizing utilities such that uh = 1 and ul = 0 gives:

PEU
(
p

h
, p

l
, y

)
= p

h
+ (1 − α)y. (3)

This means PEU produces indifference curves that are linear and parallel in the
uncertainty triangle. The slope of these indifference curves is determined solely by
the parameter α ∈ [0, 1]. To see this consider a choice between a lower envelope
lottery with 100% uncertainty, (0, 0, 1), and a lower envelope lottery analogous to
a 50/50 lottery (1/2, 1/2, 0). Figure 1b plots these two alternatives in the uncer-
tainty triangle. The 100% uncertain alternative is at the lower-right vertex and the
50/50 lottery is halfway between the endpoints of the hypotenuse. The PEU for the
100% uncertain option is PEU (0, 0, 1) = 1 − α. The PEU for the 50/50 lottery is
PEU (1/2, 1/2, 0) = 1/2. A PEUmaximizer is indifferent between these two options
if and only if they are uncertainty neutral (i.e. α = 1/2). Indifference curves for an
uncertainty neutral chooser are depicted in green in Fig. 1b. An uncertainty averse

4The PEU model has been axiomatized in a more general ‘sets of lotteries’ setting in Olszewski (2007).
Also related to our approach Gul (2015) introduces a source-dependent theory they coin Hurwicz Expected
Utility. The Hurwicz Expected Utility Theory is itself a special case of a more general theory (Expected
Uncertain Utility Theory) introduced in Gul and Pesendorfer (2014). The model in Gul (2015) is a
sub-class of α-MaxMin Expected Utility (Marinacci 2002; Ghirardato et al. 2004) as it imposes further
restrictions on priors. In this sense, the PEU model can also be interpreted as a variant of the α-MaxMin
model that is adapted to the setting of lower envelope lotteries (Marinacci 2002; Ghirardato et al. 2004).
PEU differs, however, by means of the objects of choice and its interpretation. First, PEU preferences are
defined over lower envelope lotteries whereas α-MaxMin preferences are defined over acts (bets). Second,
in the PEU model the best and the worst possibilities (L and L) are objectively defined entities. For the
α-MaxMin model, however, the best and worst possibilities are determined by an individual’s subjective
beliefs. Section 4 discusses some implications of these distinctions.
5Burghart (2018) utilizes a triangular figure to explore a model in the setting of “upper envelope lotteries.”
These objects of choice are distinct from lower envelope lotteries in that they list the maximum proba-
bility for each outcome and a term called “information” which captures how much is known about the
probabilities at the time of choice.
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Fig. 1 A triangular diagram can be used to plot two outcome lower envelope lotteries and indifference
curves for various uncertainty attitudes

chooser (i.e. α > 1/2) would prefer the 50/50 lottery to the 100% uncertain option.
Indifference curves for an uncertainty averse chooser are depicted in blue in Fig. 1c.
Someone who is uncertainty seeking (α < 1/2) would prefer the 100% uncertain
option to the 50/50 lottery. The indifference curves for an uncertainty seeking chooser
are shown in red in Fig. 1d.

The PEU model places significant structure on preferences. To explore whether
actual behavior is consistent with this structure we designed and conducted an exper-
iment in which the objects of choice were two-outcome lower envelope lotteries.
Our experiment systematically varied the tradeoffs between minimum probabilities
and uncertainty. This design permits a non-parametric assessment of the PEU model.
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This assessment indicates that about 60% of participants made choices consistent
with PEU maximization. For these PEU maximizers we empirically characterize the
heterogeneity of their uncertainty attitudes with finite mixture models. Finite mixture
methods provide an endogenous classification of individuals to different preference
types and estimate precise preferences (α̂) for each type. Our estimation results show
that there is substantial heterogeneity of uncertainty attitudes amongst the PEU max-
imizers. This heterogeneity is best characterized by the existence of three distinct
types that, coincidentally, correspond to uncertainty aversion, seeking, and, approxi-
mately speaking, neutrality. We also obtain estimated proportions of participants that
belong to each of these distinct types. One type is comprised of 30% of the PEUmax-
imizers and corresponds to (near) uncertainty neutrality (α̂ = 0.517). Roughly 48%
of PEUmaximizers exhibited uncertainty aversion (α̂ = 0.583). The third type, com-
prising roughly 22% of PEU maximizers, display uncertainty seeking behavior (α̂ =
0.395). Importantly, the finite-mixture approach does not assume the ex-ante exis-
tence of these three types. Instead, these three types emerge endogenously from the
finite mixture methodology. In addition, almost all of the PEUmaximizers are cleanly
assigned to one distinct type or another (i.e. the subjects’ posterior probabilities
of belonging to, for example, uncertainty aversion, is almost exclusively close to one).

About 40% of experimental participants cannot be considered PEU maximizers
because they exhibited non-constant uncertainty attitudes. That is, in the uncertainty
triangle, their indifference curves are linear but non-parallel.6 To parametrically
explore preferences for this group we introduce the β-PEU model. The β-PEU model
has one more parameter than PEU. It retains the linear indifference curves of PEU
but allows indifference curves to ‘fan-in’ (β > 0) or ‘fan-out’ (β < 0) across the
uncertainty triangle. Indifference curves that ‘fan-in’ imply increasing aversion to
uncertainty when moving northeast in the triangle (i.e. as the minimum probability
of the good outcome increases). Indifference curves that ‘fan-out’ imply the oppo-
site – decreasing aversion to uncertainty with northeast movements in the triangle.
Again using finite mixture models we show that all of the β-PEU maximizers in our
sample have indifference curves that ‘fan-in’ (i.e. increasing aversion to uncertainty,
or β > 0). But again there is substantial heterogeneity mainly with regard to their
baseline uncertainty aversion: About 62% of β-PEU maximizers exhibit indifference
curves that fan in yet are, on average, not significantly different from uncertainty neu-
trality. The remaining 38% exhibit very similar fanning behavior but, their average
uncertainty attitudes are best characterized as uncertainty seeking.

The next section of the paper lays out our experimental design and methods in
more detail. Section 3 presents our empirical tests and results. Section 4 discusses
the relationship between (i) the PEU model and other theoretical approaches towards
uncertainty and (ii) our empirical results and other empirical studies of uncertainty
and ambiguity attitudes. This section also discusses recent empirical studies of
uncertainty/ambiguity. Section 5 concludes and provides directions for future work.

6It is tempting to draw parallels between non-constant uncertainty attitudes and non-constant risk atti-
tudes as manifested by the Allais paradox (Allais 1953). Indeed, the β-PEU model shares similarities
with risky choice models that can accommodate variable risk attitudes such as weighted utility (Chew and
MacCrimmon 1979, 1983, 1989; Fishburn 1983). We further explore these similarities in Section 5.
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2 Experimental design andmethods

To study preferences for lower envelope lotteries we collected choices made in an
experiment. The experiment contained 25 choice situations. Each choice situation
contained six lower envelope lotteries. Each of the six lower envelope lotteries had
only two possible outcomes: 60 or 20 Swiss Francs (CHF).7 In addition, one of the
six lower envelope lotteries always had zero uncertainty, making it analogous to a
risky lottery. The lower envelope lotteries in a choice situation were arranged in such
a way that there was a constant tradeoff between minimum probabilities and uncer-
tainty. This design can be interpreted as a traditional demand elicitation mechanism,
or ‘budget experiment’, for lower envelope lotteries. The design varies (i) the rela-
tive tradeoff between minimum probabilities and uncertainty, a value we interpret as
a price (i.e. the slope of a linear budget), and (ii) the probability assigned to the CHF
60 outcome for the lower envelope lottery with zero uncertainty.

To better illustrate how the design can be viewed as a traditional budget exper-
iment, consider the three example budgets in Fig. 2a. The thin, solid line segment
represents a choice situation in which the tradeoff between uncertainty and the
minimum probabilities of receiving each outcome is one-to-one. Specifically, if
uncertainty is reduced by two units this results in a one unit increase in each of the
minimum probabilities. This is easy to see when moving from the end of the budget
at the lower-right vertex (100% uncertainty), to the end of the budget at the mid-
point on the hypotenuse (the 50/50 lottery). This movement completely reduces the
100% uncertainty into an equal division of probabilities. Next, consider the thick
budget in Fig. 2a that connects the points (0.4, 0, 0.6) on the vertical leg of the tri-
angle and the 70/30 lottery on the hypotenuse. This line retains the tradeoff between
uncertainty and minimum probabilities, but increases the probability for the CHF 60
outcome in the zero uncertainty option. We call this type of movement a ‘tradeoff-
constant increase in likelihood,’ or just ‘likelihood increase.’ This is analogous to an
increase in wealth while holding price constant. Finally, consider the dashed line in
Fig. 2a. The dashed line and thick line have the same probability for the CHF 60 out-
come in the zero uncertainty option (i.e. both budgets intersect the hypotenuse of the
uncertainty triangle at the same point). The dashed line, however, changes the trade-
off between minimum probabilities and uncertainty such that a two unit reduction in
uncertainty results in a more-than-one unit increase in the minimum probability of
CHF 60, and a smaller-than-one-unit increase in the minimum probability of CHF
20. Put simply, for the dashed line segment in Fig. 2a, the tradeoffs are such that the
minimum probability for CHF 60 is cheap.

The 25 budgets used in our experiment are plotted in Fig. 2b. The black lines depict
the budgets. The dots on each line depict the alternatives available on that budget.
This wide range of variation in tradeoffs (prices) and likelihoods (wealth) permits
a thorough examination of preferences towards lower envelope lotteries. Table 3 in
Section C of the Electronic Supplementary Material provides a detailed summary of
each budget. Also in Section C of the Electronic Supplementary Material, Table 4

7At the time of the experiment, one CHF was worth approximately $1.10.

tab:CSdetails
tab:everylotto
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Fig. 2 The Experimental Design

provides a comprehensive list of the lower envelope lotteries available on each of the
25 budgets.

2.1 Elicitation software

Participant choices were elicited using software programmed with the Psychtool-
box Matlab libraries freely available at http://www.psychtoolbox.org. Figure 3 shows
screenshots from our elicitation software for one choice situation (budget). The row
of boxes at the bottom of each screenshot, each with a thumbnail image, provide a
visual depiction of all the lower envelope lotteries available from that budget. When
participants moved their mouse over one of these boxes, the corresponding thumbnail
image was drawn as a large image in the center of the screen. The large image pro-
vided detailed outcome, minimum probability, and uncertainty information for the
alternative in the highlighted thumbnail.

Figures 3a, b, and c depict alternatives available from one budget in the experi-
ment. More specifically, these figures depict alternatives available from the budget
depicted by the thin solid line segment in Fig. 2a. In the row of boxes at the bot-
tom of each screenshot in Fig. 3 the left-most alternative is the 50/50 lottery (i.e.
the lower envelope lottery (0.5, 0.5, 0) which is the midpoint on the hypotenuse in
the uncertainty triangle). The right-most alternative is the 100% uncertain alternative
(i.e. the lower envelope lottery (0, 0, 1) which is represented as the lower-right ver-
tex in the uncertainty triangle). Figure 3a illustrates when the mouse was moved over
the thumbnail depicting the 100% uncertain alternative – a green outline surrounds
the right-most thumbnail and the large image shows the outcome information for
this alternative and that no minimum probability information is provided. Figure 3b

http://www.psychtoolbox.org
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Fig. 3 Screenshots from our Elicitation Software. Panels (a)-(c) depict different alternatives from the same
budget that corresponds to the thin solid line-segment in Fig. 2a (i.e. the budget with endpoints (0, 0, 1)
and (0.5, 0.5, 0). Panel (d) depicts “Confirm” and “Cancel” buttons that appeared after participants clicked
one of the thumbnails at the bottom of the screen

depicts when the mouse highlighted an alternative from the interior of the budget
– a green outline surrounds the thumbnail and the specific minimum probabil-
ity and uncertainty information are shown in the large image. Figure 3c depicts
when the mouse highlighted the lower envelope lottery with no uncertainty that was
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available from this budget – a green outline surrounds the left-most thumbnail and
the probability information is shown in the large image.

Participants were instructed to select the alternative they wanted most in each
choice-situation. Participants indicated their choice by moving the mouse over the
relevant thumbnail, such that it was depicted as the large image in the middle of the
screen, and then clicking that thumbnail. After clicking the thumbnail the green out-
line was locked and “Confirm” and “Cancel” buttons appeared (Fig. 3d shows these
buttons when the zero uncertainty lower envelope lottery was selected). If participants
clicked the “Cancel” button, the “Confirm” and “Cancel” buttons vanished, and the
green outline was unlocked so as to allow a different alternative to be selected in that
choice situation. If participants clicked the “Confirm” button the software recorded
the participant’s choice and moved on to the next choice-situation.

The row of thumbnail images at the bottom of the screen provided an easy-to-see
representation of the tradeoff (price) and likelihood (wealth) in a given budget which
helped to minimize participant confusion. To see how this works consider Figs. 4a, b,
and c. Figure 4a is a closeup of the thumbnails in the screen shots in Fig. 3. It shows a
one-to-one tradeoff between uncertainty and minimum probabilities. Figure 4b illus-
trates how the thumbnails made it easy to see a tradeoff constant likelihood shift –
these thumbnails correspond to alternatives available from the thick budget in Fig. 2b.
Figure 4c illustrates how the thumbnails made it easy to see a likelihood constant
tradeoff shift – these thumbnails correspond to alternatives available from the dashed
budget in Fig. 2a.

Fig. 4 A Zoomed in View of the Thumbnails Depicting the Alternatives Available from the Three Budgets
in Fig. 2a
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2.2 Resolution of uncertainty

The choice-situations in our experiment made available many distinct lower envelope
lotteries. To resolve the uncertainty for each of these lower envelope lotteries, with
a single source, and in one stage, we constructed an urn with 100 balls in it. To
illustrate how the urn permitted single source and single stage uncertainty resolution
consider the lower envelope lottery (0.4, 0.4, 0.2). Figure 5 illustrates how this lower
envelope lottery appeared in the experiment while Figure 6 illustrates how the urn
would be used to resolve uncertainty from this lower envelope lottery. In the urn there
were exactly 40 balls numbered 1 to 40 and exactly 40 balls numbered 61 to 100
(illustrated in blue and green, respectively, in Fig. 6). There were also exactly 20 balls
in the interval 41 to 60. It was unknown, however, how many of these 20 balls had an
odd-number on them and how many had an even-number on them. This uncertainty
in odds and evens is what allowed the urn to resolve the uncertain component of
the lower envelope lotteries in our experiment. Specific to the lower envelope lottery
(0.4, 0.4, 0.2) shown in Fig. 5: If the ball drawn from the urn had any number 1 to
40 on it, the lottery paid out CHF 20. If the ball drawn from the urn had any number
61 to 100 on it, the lottery paid out CHF 60. If the ball was between 41 and 60 and
odd numbered, the lottery paid out CHF 20. And if the ball was between 41 and
60 and even-numbered the lottery paid out CHF 60. Of course the ratio of odd- and
even-numbered balls was unknown – in the extreme they could have been all odd or
all even. Thus, the key was that odd and even balls in the range of uncertainty were
used to resolve the unknown portion of the lower envelope lottery. In this way our
urn allowed us to resolve the uncertainty in one stage for any of the lower envelope
lotteries in our experiment.8

2.3 Making draws from the urn

To make draws from our urn we used a commercially available bingo blower. As can
be seen in Fig. 7 we occluded the windows on our bingo blower with purple masking
tape so that balls could be seen mixing inside the blower but the numbers on the balls
could not be seen. Before participants entered the lab they were told that a bingo
blower would be used as a randomization device to determine their payment in the
experiment. To familiarize participants with the bingo blower it was turned on and
placed in the corridor where participants entered the laboratory.

The bingo-blower used can create a queue of balls in the drawing tube. To avoid
ball-queuing in the drawing tube, we inserted a stopper. As can be seen in Fig. 7,

8Following Hey et al. (2010), and the re-assessment of those data in Kothiyal et al. (2014), we wanted to
insure that participants were not concerned about experimenters ‘stacking the urn’ against the participants.
Thus, experimenters were blind to the exact composition of the urn. This was accomplished by giving
various students, faculty, and staff in the authors’ home department envelopes with two balls, a pen, and
instructions telling them to, for example, write 7 on both balls, write 8 on both balls, or 7 on one ball and
8 on the other ball, and then to seal the envelope. The balls were placed in the urn, and quality control for
readability and consistency with the instructions, was done by a person not involved with the experiment.
Experimental participants were told how the urn was constructed during the instructions, and informed
that experimenters were blinded to the exact composition of the urn.
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Fig. 5 How the Urn Resolves Uncertainty For the Lower Envelope Lottery (0.4, 0.4, 0.2)

the stopper was a wooden dowel, cut to the same length as the drawing tube, with a
large wooden ball attached to the top. When participants were at the cashier’s desk,
they removed the stopper so that one ball was “drawn” by the bingo blower. After the
participant left the cashier’s desk, the drawn-ball and stopper were replaced in the
bingo blower by the experimenter.

3 Analyzing choices

In this section we analyze choices made by 203 experimental participants. All exper-
imental sessions were conducted during one week in July, 2014 and all experimental

Fig. 6 How The Urn Resolves Uncertainty For the Lower Envelope Lottery (0.4, 0.4, 0.2)
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Fig. 7 The Bingo Blower and
Stopper Used to Make Draws
from the Urn

procedures were consistent with a protocol approved by a human subjects ethics
committee.

Our analysis proceeds in three steps. The first step assesses whether participants’
choices adhere to the generalized axiom of revealed preference (GARP). Choices
that adhere to GARP can be rationalized with a preference relation that is complete,
transitive, continuous, and monotone. These are all foundational assumptions which
underlie the PEU model along with many other theories of choice under uncertainty.

The second analytical step uses a non-parametric test to assess whether choices
can be assumed to arise through PEU maximization. Using this non-parametric test,
we identify participants whose choices can be assumed to have arisen from PEU
maximization. For these PEU-maximizers we calibrate uncertainty attitudes, as cap-
tured by α, using parametric methods. We start by assuming homogeneous α’s and,
one-by-one, increase the number of possible preference types.

This two-step analytical procedure, which combines non-parametric and paramet-
ric assessments, is distinct from the purely parametric approach used by Stahl (2014)
and Hey and Pace (2014). For example, Hey and Pace (2014) used experimental data
in an assessment of five single-stage models of decision-making under uncertainty
in which beliefs were taken to be endogenous. Their experimental design had par-
ticipants betting on which color of ball (with three possible colors) would be drawn
from an urn that was mixed by a bingo blower. Participants were shown the actively
mixing bingo blower that contained the urn in a transparent plexiglass box.9 Hey
and Pace (2014) then used parametric estimation techniques to describe and predict
choices. They found support for α-MaxMin Expected Utility (Marinacci 2002) as a

9The transparency of the bingo blower is an important consideration when interpreting the results in Hey
and Pace (2014). Transparency means that some information regarding the composition of the urn would
be available to participants through visual inspection. For example, the extreme possibility of the urn being
comprised of just one color of ball could be easily ruled out.
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representation for behavior in their experimental data, in addition to Vector Expected
Utility (Siniscalchi 2009).

The third and final step in our analysis examines choices made by the subset of
participants who were not PEU maximizers. We closely examine the choice data to
understand why PEU failed as a parsimonious model. We propose an extension, β-
Partial Ignorance Expected Utility, that provides a good fit for this sub-sample of
participants. The β-PEU model retains the linear indifference curves of PEU but, its
additional parameter, β, allows for fanning-in or fanning-out across the uncertainty
triangle.

3.1 Assessing the generalized axiom of revealed preference (GARP)

Choices from a set of linear budgets (with strictly positive prices) are consistent with
the maximization of a preference relation that is complete, transitive, continuous, and
monotone if and only if they adhere to the generalized axiom of revealed preference
(Afriat 1967; Varian 1982). In an experimental setting such as ours, the generalized
axiom is an easy-to-test condition and Varian (1982) provides an easy-to-implement
algorithm. Technical details are in Section A.1 of the Electronic Supplementary
Material.

Adherence to an axiomatic criterion is binary: Either choices conform perfectly to
GARP or they do not. While taking a binary perspective on GARP-compliance can
be informative, a widely accepted approach is to determine, conditional on observ-
ing a violation, just “how badly” choices departed from perfect GARP-compliance.
A common measure used in this regard is Houtman-Maks (HM). Houtman-Maks is
the largest subset of choices which are GARP-compliant (Houtman and Maks 1985).
So, for example, if we see that a full set of 25 choices violates GARP but, by remov-
ing one offending choice, the remaining choices are GARP-compliant, this would
represent a Houtman-Maks of 24.

To determine whether a participant’s choices are GARP-compliant, we compare
their Houtman-Maks to a critical value derived from a Monte Carlo simulation. Our
simulation uses choices for 5,000 synthetic experimental participants, each with a
uniform random choice rule (see e.g. Bronars 1987). We calculated Houtman-Maks
for each synthetic. We interpret the distribution of all 5,000 synthetics’ Houtman-
Maks as a sampling distribution and use it to determine critical values. This sampling
distribution is illustrated with the blue bars in Fig. 8a, and exact values are reported
in Fig. 8b. The critical value for the 95% confidence level implied by this sam-
pling distribution is 21. Relative to this critical value, 198 of our 203 experimental
participants (98%) had a Houtman-Maks that met or exceeded this threshold (i.e.
HM≥ 21). If the cutoff for GARP-compliance is raised to the critical value for the
99% confidence level of 22, 187 participants (92%) had a Houtman-Maks that met or
exceeded this threshold (i.e. HM≥ 22). Generally speaking, we find very high rates
of GARP-compliance.10

10 The procedure introduced by Beatty and Crawford (2011) yields the same conclusion: Given our set of
budgets it is very unlikely to pass GARP with uniform random choice. Put differently, our GARP test has
very high power.

app:GARP
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Fig. 8 Houtman-Maks for the Generalized Axiom of Revealed Preference (GARP)

3.2 Assessing the Partial Ignorance Expected Utility maximization hypothesis

In the uncertainty triangle, PEU implies indifference curves that are linear and par-
allel. This geometry necessitates a particular pattern of choices in an experiment like
ours. Consider, for example, the three budgets, each with a distinct slope, depicted
in Fig. 9. Suppose that the 50/50 lottery was chosen from the middle budget (i.e.
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Fig. 9 Testing for Linear and
Parallel Indifference Curves As
Required Under Partial
Ignorance Expected Utility

the budget connecting the 100% uncertain alternative to the 50/50 lottery). Any lin-
ear indifference curve that rationalizes this choice must lie in the shaded area. And
because PEU indifference curves must be parallel, the choice from any steeper bud-
get, like the upper-most budget in Fig. 9, must also be the option on the hypotenuse.
When a budget is flatter than the middle budget, however, no such prediction can
be placed on choices. If, however, the original choice from the middle budget was
the 100% uncertain alternative then the reverse structure would be required. Flatter
budgets would require the most uncertain alternative available to be selected, while
no such requirement could be placed on choices from steeper budgets. If the origi-
nal choice was an alternative from the strict interior of the middle budget, any PEU
indifference curve that rationalizes this choice must lie on top of that budget line.
So, for any steeper budget the lottery must be selected while for any flatter budget
the most uncertain alternative must be selected. The comprehensive technical details
for testing PEU maximization in this way, and algorithmic details, can be found in
Section A.2 of the Electronic Supplementary Material.

Paralleling the logic of assessing “how badly” choices can depart from the gen-
eralized axiom, we adapt the logic of Houtman-Maks (HM) to our test of PEU
maximization. We define “Houtman-Maks PEU” (HM-PEU) as the largest subset of
choices that conform to our test. Figure 10a is a histogram of HM-PEU for the 203
participants in our experiment (red bars). The supporting data are in Fig. 10b. The
blue bars in Fig. 10a show the sampling distribution for HM-PEU implied by 5,000
synthetic experimental participants who had a 50/50 choice rule for just the endpoints
of the budgets – these 5,000 synthetics’ choices were restricted to be either the fully-
specified lottery or the most uncertain alternative. The critical value for the 95%
confidence level for this sampling distribution was 20. Of the 203 participants in our
experiment, 120 (59.1%) had an HM-PEU that met or exceeded this critical value.
Considering the critical value for the 99% confidence level of 21, 103 participants
(50.7%) had an HM-PEU that met or exceeded this value. Generally speaking, the
assumption of PEU maximization is appropriate for the majority of our experimental
participants.

app:aMMEU
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Fig. 10 Houtman-Maks for the Partial Ignorance Expected Utility (PEU) Representation
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3.2.1 Estimating Partial Ignorance Expected Utility parameters

This section describes the procedures we used to estimate PEU preference param-
eters. We assume random utility (RU) with additively separable choice noise
(McFadden 1981). Denoting Ljk as the kth lower envelope lottery available in the j th

choice-situation, the random utility from choosing Ljk is given by

RU(Ljk) = PEU(Ljk) + εjk, (4)

where εjk is an independent and identically distributed random variable. The system-
atic, PEU-component of RU(Ljk), for the CHF 60 and CHF 20 outcomes available
in our experiment, can be written as

PEU
(
p
60

, p
20

, y
)

= α
[
p
60

u60 +
(
p
20

+ y
)

u20

]

+(1 − α)
[(

p
60

+ y
)

u60 + p
20

u20

]
. (5)

Normalizing outcome utilities such that u20 = 0 and u60 = 1, Expression (5)
simplifies to

PEU
(
p
60

, p
20

, y
)

= p
60

+ (1 − α)y, (6)

an expression with just one parameter (α) that captures an individual’s everywhere-
constant uncertainty attitude. A participant chooses the kth lower envelope lottery
(i.e. Lj∗ = Ljk) if and only if RU

(
Lj∗) ≥ RU

(
Ljk

)
. Thus, the probability that the

subject chooses the kth lower envelope lottery in choice situation j is given by

Prob
[
Lj∗ = Ljk

]
= Prob

[
PEU

(
Lj∗) − PEU

(
Ljk

)
≥ εjk − εj∗] . (7)

We assume that εjk follows a type I extreme value distribution with scale parameter
σ . So the choice probabilities take the standard form:

Prob
[
Lj∗ = Ljk

]
=

exp
(
PEU(Ljk)

σ

)

6∑
k=1

exp
(
PEU(Ljk)

σ

) . (8)

From these choice probabilities we obtain individual i’s contribution to the
likelihood function

(9)

where is the set of all lower envelope lotteries in the choice experiment and the
function is an indicator that returns one if the condition in the bracket is true and
zero otherwise.

Under the assumption that all participants have the same α (i.e. homogeneous
preferences), the log-likelihood function is

(10)



Journal of Risk and Uncertainty

where the subscript i denotes the ith of the n = 120 individuals with a PEU rep-
resentation. The PEU model involves estimation of two parameters, the index of
uncertainty aversion α, and the dispersion parameter σ .

We then relax the assumption of homogenous preferences and explore the possi-
bility that our data were generated by multiple and distinct preference types. To do so,
we employ a finite mixture approach.11 The principal idea of such models is assign-
ing each subject to one of C different preference types. Each type is endogenously
characterized by a distinct vector of parameters, (αc, σc), with c ∈ {1, ..., C}. In addi-
tion, the estimation procedure yields estimates of the proportion of the sample that
belongs to each type, πc. Summing over all C behavioral types yields the complete
log-likelihood function

(11)

In finite mixture models the number of behavioral types must be fixed prior to
estimation. There is a large literature discussing the optimal number of types but
there is no common agreement on which measure is optimal (for a summary see
McLachlan and Peel 2000). Here, we follow a similar route as Bruhin et al. (2010)
and stop incrementing the number of types as soon as adding more types does not
generate novel qualitative insights. This means, for example, that if a model with
only one type indicates that this type is uncertainty averse while a model with two
types shows that there is also a substantial minority of uncertainty seeking types, the
characterization of the population with two types is preferable because otherwise we
would overlook the substantial minority of subjects whose behavior is qualitatively
different (i.e., uncertainty seeking).

To estimate parameters we use the iterative expectation maximization (EM) algo-
rithm. Details can be found in Dempster et al. (1977) and the Supplementary Material
of Bruhin et al. (2010). Reported standard errors are obtained by bootstrapping with
1,000 replications (Efron and Tibshirani 1993). Resampling is done at the level of
participants. We prevent the order of types in the parameter vector from changing
during resampling (i.e. label switching) by first calculating the Euclidean distance
between the replication types’ parameter vectors and the original types’ parameter
vectors, and then reordering the full parameter vector accordingly.

3.2.2 Estimation results: Examining uncertainty attitude types

Estimation results are reported in Table 1. Model 1 assumes homogeneous prefer-
ences across the sub-sample of 120 participants that are PEU representable. The
parameter estimates and bootstrapped 95% confidence intervals for the α’s are plot-
ted in blue in the top portion of Fig. 11. That the confidence interval lies above 0.5
indicates that, on average, participants exhibited uncertainty aversion.

11Applications of finite mixture models are discussed in El Gamal and Grether (1995), Stahl and Wilson
(1995), Houser et al. (2004), Bruhin et al. (2010), Fehr-Duda et al. (2010), and Fehr-Duda and Epper
(2012).
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Table 1 Model estimates for the 120 participants representable with Partial Ignorance Expected Utility

Remarks ∗1/2 denotes that αj is different from 1/2 (uncertainty neutrality) at the 95% confidence level. ∗
denotes difference from 0 at the 95% confidence level. Standard errors are calculated using 1,000 bootstrap
replications. For further details see Section B of the Electronic Supplementary Material

Model 2 relaxes the restriction of homogeneous preferences and allows for two
preference types. Fitted uncertainty parameters, α1 and α2, and their standard errors
(s.e.) are shown in the middle column of Table 1. The middle portion of Fig. 11 shows
the bootstrapped 95% confidence intervals for these two preference types. The confi-
dence interval for Type 1 preferences, colored in blue, is greater than 0.5, consistent
with uncertainty aversion. The confidence interval for Type 2 preferences, colored in
red , is less than 0.5, consistent with uncertainty seeking. The finite mixture model

Fig. 11 Bootstrapped 95% Confidence Intervals For The Uncertainty Parameters (α) in Table 1

sec:techAppx
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also yields an estimate for the parameter π1, the proportion of the sample that is asso-
ciated with the Type 1 preferences. This estimate, shown in the first row for the Type
1 preferences in Table 1, indicates that about 80% of participants are uncertainty
averse. The remaining 20% of participants belong to the Type 2 preference type, or
uncertainty seeking.

The estimates for Model 3, which has three preference types, are in the right-most
column of Table 1 and the bootstrapped 95% confidence intervals for the three pref-
erence types are shown in the lower portion of Fig. 11. As with Model 2, the blue
and red confidence intervals correspond to uncertainty aversion and neutrality. The
green confidence interval, from a strictly statistical perspective, also corresponds to
uncertainty aversion. However, the difference between the fitted parameter and 0.5 is
negligible – it is only 3% larger than 0.5. We therefore interpret this type as exhibit-
ing (near) uncertainty neutrality. In terms of the estimated proportions for each of
these three preference types, 48% are uncertainty averse, 30% are nearly uncer-
tainty neutral, and 22% are uncertainty seeking. If we further increase the number of
types to four or five, no new qualitative insights emerge. There is always a type best
characterized by near uncertainty neutrality and comparatively little choice noise and
the overall share of uncertainty averse types remains relatively stable. Thus, the main
consequence of increasing the number of types to four or five is the emergence of
subdivisions among the uncertainty averse and the uncertainty seeking types.12

3.3 Examining why PEUmaximization failed

Section 3.2 reveals that a significant proportion of participants made choices that
cannot be modeled with PEU maximization (41%, or 83 of 203 participants; see
Figure 10a for details). Two explanations for why PEU failed as a parsimonious
model seem plausible. First, it could be that the everywhere-constant uncertainty
attitude embedded in the PEU representation was violated, while the linearity of
indifference curves was retained. That indifference curves would still be linear means
that choices would be predominantly at the endpoints (corners) of the budgets in our
experiment. In this case, the fraction of choices between the fully-specified lottery
endpoint and the ‘most uncertain’ endpoint should vary across the uncertainty trian-
gle. A second explanation for why PEU failed as a parsimonious model would be that
indifference curves in the uncertainty triangle were non-linear. A pattern of choices
consistent with this explanation would mean that choices were, to a large extent, on
the interior of the budgets in our experiment.

For this sub-sample of 83 participants we observe very low proportions of choices
on the interior of the budgets. And the bubble plot in Fig. 12 is illustrative of this
general pattern. It displays choices made from five budgets, each with the same
tradeoffs but differing elevations in the triangle. As can be seen in the figure, only
a small proportion of choices are on the interior of these budgets. Put another way,
there are a large proportion of choices at the endpoints of the budgets. The ratio of
choices between the fully-specified lottery endpoint and the most uncertain endpoint,

12More details on the quality of classification can be found in Section A.2 of the Electronic Supplementary
Material.
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Fig. 12 A Bubble Plot of the Choices Made by 83 Participants on Five Budgets With a Constant Price
Illustrating Non-constant Uncertainty Attitudes Across the Uncertainty Triangle

however, varies across the uncertainty triangle. This pattern of choices is roughly
consistent with the first explanation above. We therefore consider a generalization of
PEU that relaxes the everywhere constant uncertainty attitude only.

3.3.1 The β-Partial Ignorance Expected Utility model

As an empirical expedient for accommodating a non-constant uncertainty attitude we
introduce a generalization of PEU. We call this generalization the β-Partial Ignorance
Expected Utility (β-PEU) model. The β-PEU model weakens the everywhere-
constant uncertainty attitude embedded in PEU by allowing indifference curves to
fan-in or fan-out across the uncertainty triangle. The additional parameter, β, controls
the extent to which indifference curves fan-in or fan-out across the uncertainty trian-
gle. Formally, the β-PEU of a lower envelope lottery in our two-outcome experiment
is given by

β-PEU
(
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60

, p
20

, y
)

= α̃
[(
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20

+ y
)

u20 + p
60

u60
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(12)

where α̃ is a parameter that systematically varies based on the lower envelope lot-
tery being evaluated. Specifically, for a lower envelope lottery (p
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, y) in the

experiment,
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Here, the parameter α is “baseline” uncertainty aversion while β captures whether
uncertainty attitude is increasing (β > 0) or decreasing (β < 0) while moving north-
east in the triangle. The term p

60
+ y/

√
2 is the probability of the high outcome for

the fully specified lottery that an uncertainty neutral person would be indifferent to.
This provides a value for the “elevation” of the lower envelope lottery. Geometrically,
y is the length of a line segment orthogonal to the hypotenuse and the lower enve-
lope lottery (i.e. the Euclidean distance from the hypotenuse to the lower envelope
lottery’s location in the triangle). The fraction y/

√
2 gives the elevation, or distance,

along the hypotenuse, of that orthogonal connector. Subtracting one half centers this
value on the line segment connecting the lower right vertex and the midpoint on the
hypotenuse. The interpretation is that the β-PEU model has a systematically varying
uncertainty attitude, where the parameter β determines whether uncertainty attitude
is increasing or decreasing while moving northeast in the triangle.

Figure 13 shows example indifference curves for two parameterizations of β-PEU.
Both examples have α = 1

2 so that the indifference curve intersecting the uncer-
tainty triangle at the 50/50 lottery (i.e. the midpoint of the hypotenuse) has a slope
equivalent to uncertainty neutrality. Figure 13a shows a positive value of β which
produces indifference curves that ‘fan-in’ across the uncertainty triangle. Put another
way, positive values of β mean that aversion to uncertainty is increasing when mov-
ing northeast in the triangle. Negative values of β, like those depicted in Fig. 13b,
have the opposite pattern – indifference curves ‘fan-out’ when moving northeast in
the triangle.

3.3.2 Estimating β-Partial Ignorance Expected Utility parameters

In general we follow the same procedures as those in Section 3.2.1. The only dif-
ferences being that we now consider the n = 83 participants whose choices could

Fig. 13 Indifference Curves for the β-Partial Ignorance Expected Utility Model
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not be rationalized with a PEU representation. Accordingly, we replace the system-
atic component of random utility with β-PEU and estimate three parameters per type:
(αc, βc, σc). Normalizing the outcome utilities for the systematic β-PEU component
of random utility, so that u20 = 0 and u60 = 1, we have

β-PEU
(
p
60

, p
20

, y
)

= p
60

+ (1 − α̃) y. (14)

Again, the number of behavioral types (C) has to be fixed prior to estimation. We
follow the same procedure as in Section 3.2.1 by incrementing the number of types
until additional types provide no new qualitative insights. Here, we end up with C =
2 types, both showing considerable fanning across the simplex. Interestingly, one type
exhibits uncertainty seeking at low elevations in the triangle and uncertainty aversion
at high elevations. Perforce, these preferences appear uncertainty neutral near the
‘middle’ of the uncertainty triangle. The other type reveals an average behavior which
is everywhere uncertainty seeking, but decreasingly so at higher elevations in the
triangle.13

3.3.3 Estimation results: Examining β-Partial Ignorance Expected Utility preference
types

Estimation results are reported in Table 2. Model 1 assumes homogeneous pref-
erences across the sub-sample of 83 participants. The parameter estimates and a
bootstrapped 95% confidence region for preference parameters α and β are plotted
in red in Fig. 14a. The confidence intervals indicate that α is less than 0.5 and β
is positive. In general, these homogeneous parameter estimates exhibit uncertainty
seeking in the lower portions of the triangle, neutrality through the middle, and slight
to moderate aversion in the upper elevations. This is easy to see in Fig. 15a which
plots indifference curves for Model 1 as red lines in the uncertainty triangle.

Model 2 estimates two types of preferences. Fitted preference parameters, α1,
β1, α2, and β2, and their standard errors (s.e.), are shown in the right column of
Table 2. Bootstrapped 95% confidence regions for both preference types are shown
in Fig. 14b. The confidence region for Type 1 preferences is colored green while the
confidence region for Type 2 preferences is colored red . Indifference curves for these
two types are plotted in Fig. 15b. Type 1 preferences exhibit a pattern of behavior
similar to the homogeneous preferences in Model 1: uncertainty seeking in the lower
portion of the triangle, neutrality through the middle, and uncertainty aversion in the
upper elevations. Type 2 preferences are everywhere uncertainty seeking through the
lower and middle portions of the triangle and uncertainty neutral through the upper
elevations. Approximately 62% of this sample is estimated to be associated with the
Type 1 preferences (see π1 for Model 2 in Table 2). Broadly speaking, the parameter

13We also estimated models with C = 3 types. The additional type can be broadly described as a subgroup
of the ‘everywhere uncertainty averse’ type when C = 2. We also validated the β-PEU model by esti-
mating it with the sub-sample of 120 ‘vanilla’ PEU types from Section 3.2 above. As expected for these
validations, all estimated β’s are not statistically different than zero.
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Table 2 Estimates for the 83 participants modeled with β-Partial Ignorance Expected Utility

Remarks: ∗1/2 denotes that αj is different from 1/2 at the 95% confidence level. ∗ denotes difference
from 0 at the 95% confidence level. Standard errors are calculated using 1,000 bootstrap replications. For
further details see Section B of the Electronic Supplementary Material

estimates for Model 2 are consistent with the bubble plots discussed above – aversion
to uncertainty increases when moving northeast in the triangle.14

4 Related literature

We do not attempt to review the large literature on ambiguity and uncertainty in
this section – Camerer and Weber (1992), Camerer (1995), Etner et al. (2010), and
Machina and Viscusi (2014b) already provide excellent reviews. Instead, we limit
ourselves to a discussion of recent empirical research and refer to relevant theo-
ries where appropriate. Also, in contrast to the body of this paper where uncertainty
and ambiguity are clearly distinguished, we soften this distinction here to facilitate
discussion. While we want to emphasize that the findings in this paper are appropri-
ate only for the two outcome lower envelope setting studied here, we take liberties
in this section to make connections with existing papers that examine ambiguity
preferences.

Motivated by the so-called ‘Ellsberg paradox,’ there has been extensive theoret-
ical work focused on models that can accommodate ambiguity aversion and, as a
result, canonical Ellsberg behavior (Ellsberg 1961). For example, Schmeidler (1989)
put forward Choquet Expected Utility. This model assumes unique beliefs that can

14More details on the quality of classification can be found in Section B of the Electronic Supplementary
Material.
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Fig. 14 Bootstrapped 95% Confidence Regions Based on 1,000 Replications for the β-Partial Ignorance
Expected Utility Preference Parameters Reported in Table 2

Fig. 15 Indifference Curves for the β-Partial Ignorance Expected Utility Preference Parameters Reported
in Table 2. The dashed lines are for reference and represent uncertainty neutrality. Note that we only
observe choices in a sub-domain of the uncertainty triangle – Indifference curves in the upper-right and
lower-left corner are therefore extrapolations
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be represented with capacities. Unlike probabilistic beliefs, capacities need not be
additive which makes it possible to rationalize Ellsberg-type behavior.

In contrast to the unique beliefs assumed in the Subjective and Choquet Expected
Utility models, Gilboa and Schmeidler (1989) proposed a model in the multiple pri-
ors class. The so-called MaxMin Expected Utility model assumes that bets induce
sets of probabilistic beliefs. A bet is then evaluated by the belief that has the lowest
Expected Utility. A natural counterpart to the MaxMin Expected Utility model is the
MaxMax Expected Utility model – a bet is evaluated by the belief that has the highest
Expected Utility. Marinacci (2002) and Ghirardato et al. (2004) proposed an amal-
gam of the MaxMin andMaxMax Expected Utility models. The so-called α-MaxMin
Expected Utility model represents a mixture of MaxMin and MaxMax evaluations of
bets.15 In this way α-MaxMin Expected Utility is based on both beliefs and ambi-
guity attitudes or tastes (as captured by α). From an empirical perspective, this can
present challenges when jointly estimating beliefs and preference parameters (Hey
et al. 2010; Kothiyal et al. 2014).

At first blush, α-MaxMin and PEU appear quite similar. They are distinguished,
however, in two important ways. First, PEU preferences are defined over sets of lot-
teries whereas α-MaxMin preferences are defined over acts (bets). Second, in the
PEU model the best and the worst possibilities (L and L) are objectively defined
entities. For the α-MaxMin model, however, the worst and the best probability
distribution over outcomes are determined by an individual’s subjective beliefs.16

As mentioned before, empirical identification of these subjective components is
very challenging and requires comprehensive data or additional, potentially critical,
assumptions. Thus, from an empirical perspective, the PEU approach can be advanta-
geous because the slope of the indifference curve captures all the relevant information
about uncertainty attitudes. Moreover, this slope can be easily measured with budgets
in the space of lower envelope lotteries.

Our use of lower envelope lotteries to study uncertainty attitudes contributes to the
small, but growing, literature that explores preferences over ‘sets of lotteries.’ While
lower envelope lotteries are simpler than the more general ‘sets of lotteries’ setting
investigated theoretically by Olszewski (2007) and Ahn (2008), this simplicity can be
advantageous for the empirical study of uncertainty attitudes. It allows, for example,
applications of non-parametric revealed preference assessments of model classes.
More specifically, we can use the simplicity of lower envelope lotteries to, roughly
speaking, assign a price to uncertainty. This, in turn, permits non-parametric tests
of (i) the generalized axiom of revealed preference and (ii) whether preferences can
be characterized by linear and parallel indifference curves. The parsimony of lower
envelope lotteries also permits a tractable and intuitive way to describe the pattern of

15The theory introduced in Ghirardato et al. (2004) considers beliefs as a component of the theory
(i.e. beliefs are endogenous). An α-MaxMin Expected Utility model without endogenous beliefs was
axiomatized by Jaffray (1994).
16Putting aside the difference in domain (i.e. lower envelope lotteries vs. acts), these two models can make
identical behavioral predictions if an α-MaxMin Expected Utility maximizer has priors over the full range
of probabilities.
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choices that results from a violation of constant uncertainty attitudes such as when
indifference curves “fan-in” or “fan-out”.

Our paper is also related to a growing literature that examines ambiguity attitudes
in experimental settings (e.g. Abdellaoui et al. 2011; Ahn et al. 2014; Halevy 2007;
Hey et al. 2010, 2014; Stahl 2014; Baillon and Placido 2019). For example, Abdel-
laoui et al. (2011) shows that ambiguity attitudes can vary significantly depending on
the source of ambiguity. The goal of that study was, however, different from ours as
it did not examine the GARP-compliance of subjects nor the heterogeneity in pref-
erences in those data. Instead, Abdellaoui et al. (2011) developed a new tool (source
functions) for translating events (i.e. collections of states) into a willingness to bet. By
comparing source functions elicited for urns with known and unknown compositions,
the paper provides a rich characterization of attitudes towards ambiguity. Although
Abdellaoui et al. (2011) focused on different questions, those data also suggest that
varying attitudes towards ambiguity/uncertainty are a prominent feature of behavior
in these types of settings. Specifically, that paper found that for large probabilities
(p > 0.5) source functions were significantly higher for an urn with a known com-
position (urn K) than for an urn with a completely unknown composition (urn U ).
In contrast, when probabilities were small (p < 0.5) there was no meaningful differ-
ence in source functions between the urns. Because the difference between the source
functions for K and U provides a quantitative measure of ambiguity aversion, this
finding suggests that ambiguity aversion increases with the likelihood of the good
outcome. Our non-parametric test for constant uncertainty aversion suggests, how-
ever, that increasing uncertainty aversion is not a property of all subjects; 60% of
our subjects make choices consistent with constant uncertainty attitudes. And within
this group we find individuals who exhibit uncertainty aversion, uncertainty seeking
and uncertainty neutrality. But we also find that a substantial share of subjects (40%)
exhibit increasing uncertainty aversion. This property of our data can be parsimo-
niously captured using the β-PEU model with indifference curves that ‘fan-in’ across
the uncertainty triangle.

Ahn et al. (2014) examined ambiguity preferences by asking subjects to allocate
a budget between three Arrow-securities. Each security paid unity in one of three
mutually exclusive states, and zero otherwise. For one of the states the probabil-
ity that it would be realized was known to be 1

3 . For the other two states the exact
probabilities were unknown. The approach employed in Ahn et al. (2014) highlights
a natural complementarity between examining ambiguity preferences with Arrow-
securities and the lower envelope lottery approach employed here. Ahn et al. (2014)
relied on varying monetary outcomes under a fixed set of probability distributions.
In contrast, the lower envelope lottery approach used here varies minimum probabili-
ties and uncertainty (i.e. the set of lotteries) while holding outcomes fixed. Our paper
also differs from Ahn et al. (2014) because we test, non-parametrically, for constant
uncertainty attitudes and show that roughly 40% of our subjects display variable
uncertainty attitudes. Our findings suggest that the assumption of the everywhere-
constant ambiguity attitude made in Ahn et al. (2014) may not be appropriate for
all subjects. In addition, we find a much higher percentage of subjects that display
uncertainty aversion: Ahn et al. (2014) found that only 10% of their subjects exhib-
ited ambiguity aversion. In our data 29% of subjects exhibited constant uncertainty
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aversion and 23% displayed varying uncertainty aversion that increased from mod-
erate to high levels as the likelihood for the good outcome increases. Future research
should clarify whether these differences are methodological or due to differences in
sampled populations.

In a setup distinct from ours, Halevy (2007) examined different explanations for
non-neutrality towards ambiguity. The experiments in Halevy (2007) distinguished
between theories that model ambiguity aversion as violations of probabilistic sophis-
tication and theories that model choice under uncertainty using two-stage prospects.
He found substantial support for the latter explanation. While our paper asks different
questions, by focusing on GARP compliance and parsimonious empirical character-
izations of heterogeneity in uncertainty attitudes, we believe that Halevy (2007)’s
finding suggests a promising extension of our present study. In particular, in our
setup uncertainty is objectively resolved in one stage. So, violations of the reduction
of compound lottery axiom are unlikely to play a role in our observed non-neutral
uncertainty attitudes. We could, however, easily introduce a two-stage resolution of
uncertainty in our setup. By comparing behavior under one-stage and two-stage reso-
lution of uncertainty it would be straightforward to measure the change in non-neutral
uncertainty attitudes that is due to reducing compound lotteries.

Hey et al. (2010, 2014) examine data from experiments involving bets on balls
mixing in a transparent bingo blower. Both of these papers employed parametric
estimation techniques to examine the differential fits for a range of models at the
individual level. As demonstrated in these ambitious studies (see also Kothiyal et al.
2014), joint identification of preference parameters and beliefs using, for example,
an α-MaxMin-Expected Utility specification, can be challenging. Due to the large
number of parameters that have to be estimated, identification requires both a large
number of observations and strong auxiliary parametric assumptions. The exami-
nation of indifference curves in the uncertainty triangle, however, obviates these
challenges. In our setting uncertainty is an objective quantity and there are not beliefs.
So, the slope of indifference curves in the triangle captures uncertainty attitudes under
PEU (or simple extensions of PEU in the case of varying uncertainty attitudes).

Stahl (2014) examined an experiment in which participants made a series of
choices in settings similar to Ellsberg’s two- and three-color configurations. The pri-
mary focus of Stahl (2014) was to characterize heterogeneity in ambiguity attitudes.
To accomplish this the paper provides estimates of (i) individual-level models, (ii) a
representative agent model, and (iii) finite mixture models for a representation which
characterized agents/types by two parameters: an index of ambiguity aversion and an
error dispersion parameter. These estimates do not permit an examination of vary-
ing ambiguity attitudes. In terms of results, Stahl (2014) found a comparatively small
proportion of subjects that exhibited ambiguity aversion (≈ 12%) and a rather large
group of subjects (> 60%) that revealed a behavior “... suggest[ing] that the major-
ity of participants found the choice tasks profoundly confusing” (Stahl 2014, p.617).
We believe that participants in our experiment were not confused because (i) our
choice situations were very easy to understand (see Section 2), (ii) the rate of GARP-
compliance was extremely high, (iii) we found no types with a random choice rule,
and (iv) the assignment of individuals to different preference classes is very clean.
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5 Discussion and conclusion

This paper introduced two-outcome lower envelope lotteries as a simple framework
for examining choice in the face of uncertainty. This simplicity has advantages. For
example, because the slope of indifference curves in the uncertainty triangle captures
uncertainty attitudes this constitutes a useful tool for examining basic, yet impor-
tant, empirical patterns of behavior under uncertainty. It enables the examination of
GARP-compliance, allows for a non-parametric assessment of whether uncertainty
attitudes are constant or vary across the triangle and, in combination with finite
mixture methods, characterizations of the heterogeneity of uncertainty attitudes.

For future research the setting of lower envelope lotteries can be used as an
input toward a richer characterization of choices made in the face of uncertainty.
One potential direction could be an exploration of whether individuals that exhibit
increasing uncertainty aversion also commit Allais-type violations of Expected Util-
ity (Allais 1953; Burghart 2020). For Allais-type violations it is widely taken that
risk aversion is increasing as the likelihood for the good outcome increases (see
Machina (1982), Hypothesis II and Figure 5b). Here, we show that many people
exhibit increasing uncertainty aversion as likelihood increases. This raises the ques-
tion of whether individuals who exhibit increasing uncertainty aversion will also
exhibit increasing risk aversion.

Another direction that seems promising is using the lower envelope lottery setting
to explore uncertainty preferences when there are three or more outcomes. Machina
(2014a) examines such a setting and highlights how many models of choice under
uncertainty include an informational symmetry assumption. In a three outcome lower
envelope setting this would require, for example, (0, 0, 0, 1) ∼ (1/3, 1/3, 1/3, 0).
Generalizing PEU to three (or more) outcomes, however, would imply (0, 0, 0, 1) ∼
(1/2, 0, 1/2, 0). This represents a situation where empirical interrogation of these
contrasting predictions could prove fruitful.17

Yet another direction that seems promising is using lower envelope lotteries to
examine attitudes towards uncertainty when a risky alternative is not available in
the choice set. If behavior differs between environments with and without a risky
alternative it could challenge existing theories of choice under uncertainty. Further,
in a setting where lower envelope lotteries are defined on complementary events
our setup could shed more light on violations of probabilistic sophistication (Bail-
lon et al. 2018). For example, Baillon and Bleichrodt (2015) demonstrate that the
additivity of disjoint events, as required by probabilistic sophistication, fails for
naturally occurring uncertainties. In addition, Baillon and Placido (2019) highlight
how decreasing ambiguity aversion is important both theoretically and empirically.
The lower envelope setting could shed additional light on this important feature of
behavior.

Exploring whether one- or two-stage resolution of lower envelope lotteries has
an effect on behavior would be another area worth exploring. Such an extension
seems natural given that Halevy (2007) documents a relationship between canonical

17The observations in this paragraph were generously provided by a referee.
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ambiguity aversion and violations of the reduction of compound lotteries. Lower
envelope lotteries provide a simple and intuitive setting for deeper explorations of
these questions, and others, in the domain of uncertainty.

Acknowledgments Special thanks go to Aurélien Baillon and Peter Wakker as they gave us detailed
feedback on an early draft of this paper, in addition to some key references. All authors gratefully acknowl-
edge valuable input from Jim Cox, Charles Efferson, Tony Williams, anonymous referees, participants in
the seminars at Princeton University, University of Zurich, Virginia Tech, and Wesleyan University, par-
ticipants at the 2014 Economic Science Association North American meeting held in Fort Lauderdale,
Florida, participants at RUD 2016 (Paris-Dauphine), and participants at the 2016 European Meeting of the
Econometric Society in Geneva. Sonja Vogt was instrumental in preparing the urn used to resolve uncer-
tainty. And we also thank the students, faculty and staff in the Department of Economics at UZH for their
assistance in composing the urn. Stefan Wehrli, Oliver Brägger and Nadja Jehli provided technical and
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